Appendix A – Analysis of Mike's formulation of RFI feedback

# /	Feedback text	What is being refuted	Reconstructed refutation argument
Student	T COUSTOR TOXT	(Claim)	(Data, Warrant)
F3.1	These are critical points, but what makes you	C: For every closed	D: The cubic polynomial <i>f</i> and its critical points.
Adrian	think that the maximum and minimum values of	bounded interval <i>I</i> , if $f'(x)$	W: Let <i>I</i> be an arbitrary closed bounded interval and
	this polynomial on [0,1] are achieved at these	has no roots then $f(x)$ does	suppose that the maximum and minimum of f are
	points? The points do not even depend on the	not obtain a maximum or	achieved at the critical points of f , then f is bounded
	interval! Do you mean that the maximum and	minimum in <i>I</i> .	by its values at its critical points. Since <i>I</i> was arbitrary
	minimum values on every interval [a,b] are the		it follows that f is bounded which is a contradiction
	same? But this cannot be, because the		because non-constant polynomials are unbounded.
	polynomial is unbounded both above and below.		
F3.2	f(x)=x does not have roots of the derivative (even	C: For every polynomial <i>f</i> ,	$\mathbf{D}: f(x) = x.$
Bailey	among real numbers!) but it does achieve its	if $f'(x)$ has no roots then	W: The derivative of f has no roots, but f does achieve
	maximum and minimum values on [0,1].	f(x) does not obtain a	a minimum or maximum in [0,1], contradiction!
		maximum or minimum in <i>I</i>	
F3.3	Apparently you see some connection between the	C: The maximum of f in I	D : The polynomial f, its critical points, the sign of f' .
Charlie	sign of $f''(0)$ and extremal values. Here is a	is necessarily achieved in	W: Suppose the maximum of f in I is necessarily
	counterexample to this connection: Consider	points where the sign of f '	achieved in points where the sign of f' is not positive.
	your function on the closed interval [0,10]. It has	is not positive.	Consider f on the closed interval $[0, 10]$. The second
	no local maxima, its 2nd derivative is positive on		derivative of f in $(0,10]$ is positive and f does not
	(0,10], and $f(0)=0$ is not a maximum, since, say		achieve its maximum in $[0, 10]$ at 0 because $f(2) > f(0)$.
	f(2) = 5/3 > 0. Thus, according to your logic, the		Thus, f does not achieve a maximum in $[0, 10]$, in
	function does not achieve a maximum value on		contradiction to EVT.
	[0,10].		
F3.4	Note that both values of x [in which $f'(x)=0$] are	C: If f is a real-valued	D: The polynomial f , the interval $[0, 1]$, the roots of
Dylan	outside the interval [0,1]. Thus, according to	polynomial then the	f'(x) are both outside of the interval [0,1].
	your logic, the range of your function does not	maximum and minimum of	W: Applying the attributed warrant to $f(x)$ as a real-
	have the LUB (nor LLB) even over the reals.	f(x) in [0,1] are achieved at	valued function implies that the real-valued $f(x)$ does
	Contradiction?	the critical points of $f(x)$.	not attain a maximum or minimum in [0,1], in
			contradiction to EVT.