Appendix A - Analysis of Mike's formulation of RFI feedback

\# Student	Feedback text	What is being refuted (Claim)	Reconstructed refutation argument (Data, Warrant)
$\begin{gathered} \hline \text { F3.1 } \\ \text { Adrian } \end{gathered}$	These are critical points, but what makes you think that the maximum and minimum values of this polynomial on [0,1] are achieved at these points? The points do not even depend on the interval! Do you mean that the maximum and minimum values on every interval [a,b] are the same? But this cannot be, because the polynomial is unbounded both above and below.	C: For every closed bounded interval I, if $f^{\prime}(x)$ has no roots then $f(x)$ does not obtain a maximum or minimum in I.	D: The cubic polynomial f and its critical points. W: Let I be an arbitrary closed bounded interval and suppose that the maximum and minimum of f are achieved at the critical points of f, then f is bounded by its values at its critical points. Since I was arbitrary it follows that f is bounded which is a contradiction because non-constant polynomials are unbounded.
F3.2 Bailey	$f(x)=x$ does not have roots of the derivative (even among real numbers!) but it does achieve its maximum and minimum values on [0,1].	C: For every polynomial f, if $f^{\prime}(x)$ has no roots then $f(x)$ does not obtain a maximum or minimum in I	D: $f(x)=x$. W: The derivative of f has no roots, but f does achieve a minimum or maximum in $[0,1]$, contradiction!
F3.3 Charlie	Apparently you see some connection between the sign of $f^{\prime \prime}(0)$ and extremal values. Here is a counterexample to this connection: Consider your function on the closed interval [0,10]. It has no local maxima, its 2nd derivative is positive on $(0,10]$, and $f(0)=0$ is not a maximum, since, say $f(2)=5 / 3>0$. Thus, according to your logic, the function does not achieve a maximum value on [0,10].	C: The maximum of f in I is necessarily achieved in points where the sign of $f^{\prime \prime}$, is not positive.	D: The polynomial f, its critical points, the sign of $f^{\prime \prime}$. W: Suppose the maximum of f in I is necessarily achieved in points where the sign of f ' is not positive. Consider f on the closed interval [0,10]. The second derivative of f in $(0,10]$ is positive and f does not achieve its maximum in $[0,10]$ at 0 because $\mathrm{f}(2)>f(0)$. Thus, f does not achieve a maximum in [0,10], in contradiction to EVT.
$\begin{gathered} \hline \text { F3.4 } \\ \text { Dylan } \end{gathered}$	Note that both values of x [in which $\left.f^{\prime}(x)=0\right]$ are outside the interval [0,1]. Thus, according to your logic, the range of your function does not have the $L U B$ (nor $L L B$) even over the reals. Contradiction?	C: If f is a real-valued polynomial then the maximum and minimum of $f(x)$ in $[0,1]$ are achieved at the critical points of $f(x)$.	D: The polynomial f, the interval $[0,1]$, the roots of $\mathrm{f}^{\prime}(\mathrm{x})$ are both outside of the interval $[0,1]$. W: Applying the attributed warrant to $f(x)$ as a realvalued function implies that the real-valued $f(x)$ does not attain a maximum or minimum in $[0,1]$, in contradiction to EVT.

